Opleggingen in spoorwegprojecten

ProRail en Infrabel zijn belangrijke opdrachtgevers van infrastructurele werken. Net als wegbeheerders confirmeren ze zich niet geheel aan de Europese norm voor opleggingen en stellen aanvullende eisen. Ook hier betreft het voornamelijk de types van gewapend rubber. Door de extra bepalingen kan een aannemer voor onaangename verrassingen komen te staan. In dit artikel wordt aangegeven waarmee rekening dient te worden gehouden.

Geharmoniseerde Europese productnormen zijn bedoeld ter bevordering van het vrije handelsverkeer binnen de Europese Economische Ruimte. Nationale overheden mogen geen extra eisen stellen die dit verstoren. De praktijk is echter weerbarstig. Eerder dit jaar publiceerden wij over dit onderwerp het artikel ‘Vertrouwen in CE-markering?’. Spoorwegbeheerders zijn echter private bedrijven waarin de overheid zeggenschap heeft. De vraag of deze organisaties ook onder het verbod vallen, laten we graag aan juristen over.

In Nederland kan RAW-Appendix RIB 0084 uit 2006 van toepassing worden verklaard. Hoofdstuk 46 heeft betrekking op opleggingen en voegconstructies. Het document sluit op een aantal punten slecht aan bij de Europese norm EN 1337 waar overigens wel naar wordt verwezen. De meest heikele eis vinden we onder 46.03.01.01: van élk oplegblok dient het resultaat van een indrukkings- en een afschuiftest te worden overlegd. Artikel 46.06.02.03 stelt dat dit dient te gebeuren volgens deel 3 van de Europese norm maar zonder vermelding van de betreffende testmethode. Bedoeld wordt Annex F (Shear modulus test method) en Annex H (Compression test method). Opmerkelijk is dat de blokken twee maal voorbelast moeten worden, terwijl dat volgens de Europese norm slechts één maal hoeft.

De productie van gewapend rubber opleggingen is vergelijkbaar met het bakken van brood. Met een partij ‘deeg’ (het rubbermengsel) kan, afhankelijk van de grootte van de blokken, een flink aantal opleggingen worden ‘gebakken’. Tenzij de persdruk en de ‘baktijd’ van de vulkanisatieoven verkeerd worden ingesteld, zal nauwelijks verschil te zien zijn tussen de eigenschappen van blokken uit hetzelfde rubbermengsel. Nog afgezien van het feit dat het testen van elk blok tijdrovend is, levert het geen interessante informatie op.

Op het gebied van glijplaten wijkt RIB 0084 sterk af van de Europese norm. In 46.06.03.03 wordt geëist dat de plaat moet worden gemaakt van corrosievast staal 1.4571. § 5.4.1 van EN 1337-2 schrijft voor dat dit 1.4401 + 2B of 1.4404 + 2B moet zijn. Het afwerkingsniveau is 1P of 2P volgens tabel 6 van EN 10088-2 terwijl § 5.4.2 van EN 1337-2 een behandeling voorschrijft met als resultaat een oppervlakteruwheid van maximaal 1 µm volgens EN ISO 4287. Ook moet de oppervlaktehardheid volgens EN 6507-2 tussen 150 en 220 HV1 liggen. Het resultaat is als een spiegel. Hoe het door ProRail voorgeschreven afwerkingsniveau zich daartoe verhoudt is ons nog onbekend. Afwijken van de Europese norm is om verschillende redenen echter niet aan te raden.

In België vinden we al jaren dezelfde fout in bestekken. Infrabel is daarover door onze fabrikant SNAC lang geleden geïnformeerd maar de tekst is nog altijd ongewijzigd. Gevolg is vaak een hoop gedoe en ontevreden klanten. Ondanks waarschuwingen vooraf én toezending van de juiste monsters, kregen we van een gefrustreerde aannemer het verwijt dat wij niet ‘aan de Belgische normen’ konden voldoen.

In de gewraakte bestektekst wordt gesteld dat een extern laboratorium ‘proefstukken moeten worden genomen uit een afgewerkte oplegging’ en dat ‘de eisen worden weergegeven in tabel 1 van EN 1337-3‘. In dit document wordt echter onderscheid gemaakt in proeven op het eindproduct (tabel 7) en tests op het halffabricaat (tabel 8). ‘Minimale weerstand bij scheur’ (tear resistance) staat in het laatste lijstje. De waarde uit tabel 1 geldt dus voor het rubbermengsel. Tijdens vulkanisatie verandert de molecuulstructuur van het rubber ofwel brood heeft andere eigenschappen dan het deeg!

Voegovergangsconstructie of dilatatievoegprofiel?

‘Wat hebben jullie me nu voor bouwpakket geleverd?’ vroeg de aannemer die in het bestek voorgeschreven Buchberger voegprofielen had besteld voor een fietsbrug. Duidelijk was dat hij gewend was te werken met voegovergangsconstructies en niet met dilatatievoegprofielen. Weliswaar gaat het om bouwmaterialen die exact dezelfde functie hebben, maar alleen al het merkwaardige feit dat B&U-aannemers een ander woord gebruiken dan hun infracollega’s zegt veel. In alle gevallen gaat het om de afwerking van dilatatievoegen waarbij voegbeweging, verkeersbelasting, waterdichting en levensduur de belangrijkste keuzecriteria zijn. Duidelijk is dat in een snelweg een steviger type voegafwerking moet wordt toegepast dan in een parkeerdak. Bij projecten als een fietsbrug of een weg boven een parkeerkelder voldoet een relatief lichte constructie echter uitstekend*. Zulke projecten vallen met zo’n materiaalkeus in het grijze gebied tussen Infra en Burgerlijke- en Utiliteitsbouw. We zien nu dat de infra-ontwerper soms uitgaat van de beperkingen van een voegovergangsconstructie. In dit artikel wordt ingegaan op de verschillen tussen beide varianten.

Zowel voegovergangsconstructies (kortweg voc’s) als dilatatievoegprofielen zijn de flexibele schakel tussen twee onafhankelijk bewegende delen van een bouwwerk. De voegafwerking moet bescherming bieden aan de onderliggende constructie en tevens langdurig een veilige en comfortabele passage van verkeer mogelijk maken. Duidelijk is dat het juiste type moet worden afgestemd op de verkeersbelasting. Intensieve mobiele belasting  door vracht- en/of snelverkeer vraagt een meer solide constructie. Qua waterdichtheid zijn de B&U-voegprofielen superieur aan voc’s. De gebruiksruimte onder een parkeerdak is immers veel gevoeliger voor lekkage dan een landhoofd van een kunstwerk. Buchberger voegprofielen hebben zelfs een dubbele dichting.

Stalen voegovergangsconstructies worden in de fabriek op maat gemaakt in de vorm van het profiel van de weg. Vaak is het tussenrubber al gemonteerd voor transport. Brugvoegen van vijftien meter kunnen zonder probleem worden vervoerd en bij langere constructies biedt een veldlas of speciaal transport uitkomst. Dilatatievoegprofielen daarentegen komen in standaardlengten (doorgaans drie meter) in een kist. Daarin zitten ook de benodigde losse vormstukken, ankers, tussenrubber en waterdichte folie.

Bij de opstanden aan de voegeinden zit een groot verschil. Waar voc’s alleen onder een hoek van maximaal 45 graden kunnen worden ‘geknikt’ in verband het stugge tussenrubber, worden voor B&U profielen ook haakse hoeken geleverd. Het tussenrubber wordt in de fabriek door middel van vulkanisatie in gewenste hoek gezet. Dit betekent dat het wegprofiel van een fietsbrug met trottoirs aan beide zijden perfect gevolgd kan worden. Oplossingen met een verdiepte ligging van de voegconstructie onder het voetppad zijn helemaal niet nodig.

Ook wat betreft corrosiewering bestaan duidelijke verschillen tussen beide voegafwerkingen. Bij de B&U-oplossingen bestaat de onderconstructie uit aluminium of verzinkt staal. In verband met de perfecte waterdichting – zeker bij een dubbele dichting – ligt deze dragende constructie dus in een droog binnenklimaat en kan de corrosiewering daarop worden afgestemd. De bovenconstructie (klemlijsten) ligt wel in een door dooizouten agressief milieu. Ze worden daarom gemaakt van corrosievast staal.  Stalen voc’s daarentegen liggen in zijn geheel op het scheidsvlak tussen buiten en binnen. De corrosiewering is hierop aangepast.

Infra-voegafwerkingen worden in de sparing op de juiste hoogte gesteld met dommekrachten en ander hefmaterieel alvorens ze worden ingestort. De onderbouw van achteraf in te bouwen dilatatievoegprofielen worden stuk voor stuk in mortel gesteld. Zie dit filmpje. Pas als de onderbouw verankerd is wordt de constructie waterdicht afgewerkt. Van de meeste voegprofielen zijn overigens ook uitvoeringen beschikbaar die door de kopbouten lijken op de voetgangersuitvoering van een voc. Voorschrijving van deze variant voorkomt misschien een te grote cultuurschok.  

*) Zie het artikel ‘Voegovergangsconstructies voor fiets- en voetgangersbruggen’.

Shoppen in normen

Afbeelding

Bij recente opdrachten werd ons geëist om voor onderdelen van een pot- of bolsegmentoplegging af te wijken van de geldende geharmoniseerde norm EN 1337.  Zo had een klant in de contractstukken speciale eisen aangetroffen voor constructiestaal en bouten. Bij een ander project stond de afwijkende eis expliciet in het bestek. Navraag bij frequente gebruikers van normen en richtlijnen leert dat winkelen in normen niet is toegestaan. Waarschijnlijk gaat het om een ongeschreven regel want ook normalisatie-instituut NEN kon niet melden waar dit staat. In dit artikel wordt ingegaan op de consequenties van ‘cherry picking’ bij het voorschrijven van een CE-gemarkeerd product als een brugoplegging. Ook wordt een blik geworpen documenten die naar de betreffende norm verwijzen.

CE-markering heeft als belangrijkste doel de bevordering van het vrije verkeer van goederen binnen de Europese Economische Ruimte. Dit wordt bewerkstelligd door het stellen van eenduidige eisen aan het product en de kwaliteit van het fabricageproces. Een fabrikant mag geen CE-gemarkeerde producten op de markt brengen zonder daartoe te zijn gecertificeerd. Daarvoor wordt onder meer de fabrieksproductiebeheersing (FPC) beoordeeld. Buiten een gedegen interne kwaliteitscontrole is ook de specificatie en verificatie van grondstoffen en bestanddelen van belang. De toeleveringsketen dient dus op orde te zijn.

Fabrikanten van CE-gemarkeerde opleggingen hebben veel energie en geld gestoken in het verkrijgen van hun certificaten. Met een geldig ‘Certificaat van bestendigheid van de prestaties’ wordt aangetoond dat de opleggingen altijd zullen voldoen aan de gestelde eisen en dat wordt voldaan aan alle geldende productievoorschriften. Onderliggende bewijslast als bijvoorbeeld vakbekwaamheidscertificaten en controleformulieren worden afgedekt met één document en hoeven derhalve niet meer apart overlegd te worden. Dit geldt ook voor de kwaliteit van ingekochte materialen.

Indien winkelen in normen geoorloofd zou zijn, dan heeft dit bedrijfsorganisatorische consequenties. Bij afwijkende eisen voor bijvoorbeeld staal, bouten of straalgrit  zal de fabrikant extra voorraden moeten aanhouden en/of moeten afwijken van zijn normale toeleveringsketen. Bijkomend is dat de relatie van de geldende certificaten met de onderliggende kwaliteitsdocumenten verloren gaat. Het papierwerk neemt toe en dat staat haaks op de gedachte achter CE-markering.  

Nationale overheden mogen geen aanvullende eisen stellen aan een CE-gemarkeerd product aldus de website van de Rijksdienst voor Ondernemend Nederland. In ‘De CE-markering bij bouwproducten’ uit 2014 kwam de Nederlandse landsadvocaat tot de conclusie dat overheden alleen hogere of afwijkende specificaties kunnen vragen als deze gemotiveerd worden. Wanneer zo’n motivatie ontbreekt, dan hebben we volgens NEN te maken met ‘een contract dat zichzelf tegenspreekt’. Contractjuristen weten daar in voorkomende gevallen waarschijnlijk wel raad mee. Een geraadpleegd bestekschrijver (een contractdeskundige bij uitstek) meldde geen controles te doen op juridisch gebied. Vertrouwd wordt dat het voor de beroepsgroep ontwikkelde gereedschap op dit punt orde is. Daarmee wordt de verantwoording voor een goede juridische samenhang gelegd bij instanties als CROW, Rijkswaterstaat en Expertise Beton en Staal.

In Nederland wordt het gebruik van norm EN 1337 aangestuurd door de RTD 1012. Dit document wordt op zijn beurt van toepassing verklaart in de Richtlijnen Ontwerp Kunstwerken (ROK – RTD 1001). In § 5.2 vinden we aanvullende eisen aan constructiestaal en RVS. Expliciet is echter vermeld dat voor voegovergangen en opleggingen de RTD’s over deze onderwerpen van toepassing zijn. In RTD 1012 ‘Eisen voor opleggingen’ worden geen extra materiaaleisen gesteld. Bedenkelijk is wel dat test- en berekeningsrapporten moeten worden overlegd. Het Vlaamse Standaardbestek 260 2.0 is juridisch niet op orde. In artikel 5.2 ’Identificatie, keuringsdocumenten en naspeurbaarheid’ wordt bijvoorbeeld een keuringsdocument 3.2 (lees: een onafhankelijke verificatie van de materiaalconformiteit) voor opleggingen voorgeschreven. De auteurs geven daarmee andermaal blijk geen vertrouwen te hebben in CE-markering. Verificatie van grondstoffen is immers al onderdeel van certificatie volgens NBN-EN 1337.

Mattenvoegen voor spoorviaducten

Incidenteel ontvangen wij een aanvraag voor de afwerking van een dilatatievoeg van een spoorviaduct. Qua waterdichtheid en voegbeweging is de problematiek niet anders dan bij voegovergangsconstructies voor de wegenbouw. Afwijkend is echter de aard van de verkeersbelasting. Deze is indirect omdat spoorwegen zijn voorzien van een ballastbed waarin bielzen zijn ingebed. Dit bed van grove steenslag of grind zorgt voor verdeling van de belasting, trillingsdemping en waterafvoer. De dikte is meestal 25 tot 30 cm tot de onderkant van de dwarsligger. In feite gaat het bij spoorviaducten dus om een ondergrondse dilatatievoegen. De voegen in spoorwegen worden echter niet afgedekt met zand of grond, maar met grof gesteente. Welke voegovergangsconstructie is hier geschikt?

In Nederland wordt zo’n voeg traditioneel afgewerkt met een stootplaat (‘overgangsplaat’) die in een neus aan het landhoofd haakt. Een grindkoffer zorgt voor de waterafvoer en een ballastmat houdt de voeg vrij van grind en beschermt de hoeken van de betonnen elementen tegen afbrokkeling.

Het alternatief op deze bewerkelijke constructie is een zogenoemde ‘gewelfde mattenvoeg’. Deze voegovergangsconstructie is vermeld als concept 3.3 in de Meerkeuzematrix (MKM, RTD 1007-1).  De ‘familiedefinitie’ luidt: ‘Deze voegovergang gebruikt de elastische eigenschappen van een geprefabriceerde rubberen mat om de verwachte bewegingen van een constructie op te nemen’. De ongewapende mat kan dus elastisch vervormen. De benodigde verticale stijfheid wordt ontleend aan de welvingen in het rubber. Hierin verschilt de gewelfde mattenvoeg van de meer bekende gewapende mattenvoeg ((MKM concept 3.1)  die wordt toegepast in de wegenbouw.

Aan weerszijde van de gewelfde mattenvoegen zitten deels ingevulkaniseerde T-profielen. Deze zijn voorzien van gaten ten behoeve van de mechanische bevestiging op de ondergrond.  Als het om een betonnen fundering gaat, dan wordt een onderconstructie toegepast die enigszins vergelijkbaar is met die van voegovergangsconstructies uit de wegenbouw. Bij een stalen viaduct levert de aannemer een staalconstructie die is voorzien van M12 stiftankers. Omdat de voegovergang niet dynamisch belast wordt, is deze verbinding toereikend.  

In principe wordt de voegovergangsconstructie op maat in één stuk aangeleverd. De stootvoegen van de matdelen worden daartoe in de fabriek aaneen gevulkaniseerd. Het geheel blijft oprolbaar omdat de ingevulkaniseerde T-profielen niet doorlopen. Op de bouwplaats worden de matten met klemlijsten en moeren bevestigd op de onderconstructie.

De waterdichting wordt gerealiseerd door middel van een aan de onderzijde van de mat aangevulkaniseerde rubberen slabbe. Deze slabbe wordt op de bouwplaats op traditionele wijze ingeplakt met bitumineuze dakbedekking. Aan de zijde van de voeg zorgt de klemverbinding voor een perfecte dichting. Zijdelingse indringing van hemelwater wordt tegengegaan met een bitumineuze voegvulling.

Gewelfde mattenvoegen zijn ook bekend onder de naam van fabrikant STOG uit München. Ze zijn veel toegepast in Duitsland in projecten van de Deutsche Bahn. Ook in Oostenrijk, Zwitserland, Groot-Brittannië en de Verenigde Staten zijn projecten gerealiseerd. Stog-voegen zijn leverbaar voor horizontale voegbewegingen van ± 15, ± 40 en ± 65 mm. Naast horizontale verkorting en verlenging is ook verticale en zijdelingse voegbeweging mogelijk. Stog-voegen zijn geschikt voor nieuwbouw- en renovatieprojecten met een minimale inbouwdiepte van 120 mm. De gladde bovenzijde maakt de voegovergangsconstructie ook geschikt voor inbouw in bijvoorbeeld voetgangersbruggen of perrons.

Tips voor constructeurs

Bij de bouw van viaducten of bruggen wordt het ontwerp van de benodigde opleggingen meestal overgelaten aan de leverancier. De voorschrijver levert een lijst van constructieve eisen aan en vermeldt soms de voorkeur voor een type oplegging. Witte raven reiken de benodigde informatie aan op de wijze zoals voorgeschreven in norm EN 1337-1. Vaker ontvangen we echter enorme tabellen uit de rekenprogrammatuur van de constructeur. U vindt zelf wel wat u nodig heeft!

Eenduidige communicatie bij de inkoop van opleggingen is noodzakelijk onderschrijft ook het Platform Voegovergangen en Opleggingen (PVO). Het voorkomt interpretatiefouten, onjuiste prijsvorming en eventuele schade aan het kunstwerk. Van belang is te vermelden dat de coördinerend constructeur verantwoordelijk is voor het aanleveren van de juiste gegevens. Meer over de overdracht van informatie in “Ontwerp van brugopleggingen, eenduidige communicatie is noodzaak!”. In dit artikel gaan we uit van de dagelijkse praktijk. Hoe worden aangeleverde gegevens opgevat door een specialist in opleggingen? Waar gaat het soms mis? Met welke zaken dient rekening te worden gehouden bij informatieoverdracht?

Tip 1: Alle op te geven waarden zijn in uiterste grenstoestand (UGT). Niet alleen belastingen, maar ook translaties (verplaatsingen) en rotaties (hoekverdraaiingen) moeten worden opgegeven in uiterste grenstoestand. De toetsingsmethodiek voor gewapend rubber oplegblokken uit EN 1337-3:2005 is hierop gebaseerd en ook de ontwerper van de pot- en bolsegmentoplegging rekent met UGT-waarden.  

Tip 2. Geef lengteveranderingen niet op als horizontale belastingen. Verkeers- en windbelastingen zijn horizontale belastingen, lengteveranderingen zijn translaties. Opgelegde vervormingen wekken reactiekrachten op bij elastisch vervormbare opleggingen. Enthousiaste constructeurs rekenen verplaatsingen als gevolg van krimp, kruip en temperatuur soms om naar een horizontale belasting op basis van een aangenomen veerconstante. Zo’n aanname is echter zelden juist. De veerconstante is namelijk sterk afhankelijk van de afmetingen van het rubber blok (zie “Vervorming van gewapend rubber opleggingen”). Bij omrekening bestaat bovendien de kans dat een lengteverandering dubbel wordt meegenomen in de toetsingsmethodiek.

Tip 3. Laat wrijving bij glijopleggingen buiten beschouwing. Wrijving is afhankelijk van de oplegdruk en dus gerelateerd aan de afmetingen van het contactvlak van een glijoplegging. De ontwerper van een oplegging hanteert bij zijn berekeningen tabel 11 uit EN 1337:2. Als wrijvingen onderdeel zijn van de opgegeven horizontale belastingen, dan worden ze dubbel berekend!

Tip 4. Geef translaties op als verlenging en verkorting. De meest gemaakte bron van fouten is vermelding van een translatie als één waarde. Een opleggingenspecialist interpreteert dat doorgaans als plus en min de halve waarde. Met andere woorden: de helft van het opgegeven getal wordt gezien als verkorting van het oplegde bouwdeel, de andere helft als verlenging. Soms blijkt de voorschrijver echter de maximale beweging naar één zijde te hebben bedoeld. Bij een glijoplegging wordt dan een te krappe glijplaat gerekend. Als de beweging naar één kant de enige is, maakt het voor de prijs niet uit. Een glijplaat kan immers een voorinstelling krijgen. Gaat het echter om een translatie die door vervorming moet opgenomen, dan gaat het mis. Aan een rubber oplegging type B of C kan geen voorinstelling worden gegeven.

Als zowel verlenging als verkorting worden opgegeven dan zijn misverstanden uitgesloten. De ontwerper van een gewapend rubber oplegging neemt de grootse absolute waarde mee in zijn berekeningen. Bij het ontwerp van een glijoplegging worden de absolute waarden opgeteld om de lengte van de glijplaat te bepalen.

Tip 4. Geef rotaties op naar twee kanten. Dit gaat meestal goed. De ontwerper neemt de grootse absolute waarde mee in zijn berekeningen. Dit geldt voor elk type oplegging.

Tip 5. Neem geen extra zekerheden op voor vervorming tenzij strikt noodzakelijk. § 5.4 van EN 1337-1 voorziet in toeslagen voor translaties en rotaties. De opgegeven waarden van de vervormingen worden bij het ontwerp dus al verhoogd.

Tip 6. Stuur een oplegschema mee. De cijfers gaan daarmee leven! De juiste symbolen zijn te vinden in EN 1337-1

Dilatatievoegprofielen in bedrijfsvloeren

Bij de voorbereidingen van de bouw van een productiehal werd overwogen om dilatatievoegen aan te brengen in de vloer. Een constructeur zou in het proces worden geraadpleegd. Deze specialist weet immers als geen ander waar spanningen als gevolg van krimp, zettingsverschillen, belastingen en variërende temperaturen zich zullen voordoen. Niet dilateren betekent een fraaie egale vloer maar ook het risico van scheurvorming. Kosten spelen natuurlijk ook een rol in de afwegingen. Niet alleen het maken van de voeg zelf maar vooral de afwerking kost geld. Het gaat dan niet alleen om de prijs van een voegprofiel, maar ook om de montage. Hoe past dit in het bouwproces? De projectleider vroeg ons de mogelijkheden op een rij te zetten.

Dilatatievoegprofielen zijn leverbaar in vele soorten en maten. Sommige typen zijn in een aantal varianten leverbaar. Het juiste profiel wordt gekozen op basis van de omstandigheden in de gebruiksfase van een gebouw. Wat is de verkeersbelasting en is trillingvrij overrijden gewenst? Hoe wordt de vloer afgewerkt? Is waterdichtheid van belang? Spelen esthetische wensen een rol? In ons artikel “Keuze van een dilatatieprofiel” komen de meeste van deze aspecten aan bod. In dit artikel wordt onderscheid gemaakt in de verschillende fasen van het bouwproces waarin de profielen kunnen worden aangebracht. Met name bij bedrijfsvloeren die direct op de ondergrond worden aangebracht bestaan verschillende mogelijkheden.

Voegprofielen die gelijk met met de bekisting worden aangebracht. Dit type profiel wordt gesteld op een geprepareerde ondergrond die al dan niet is voorzien van thermisch isolatiemateriaal. De profielen dienen tevens als bekisting en zijn in staat dwarskrachten over te dragen tussen de vloervelden. Sommige typen zijn door hun geringe breedte nauwelijks zichtbaar, andere wijken qua uiterlijk niet af van exemplaren die op een andere wijze worden ingebouwd. In alle gevallen zijn de profielen uiterst zwaar belastbaar door bijvoorbeeld vorkheftrucks met harde wielen en zorgen ze voor kantopsluiting waardoor afbrokkelen van de voegwanden wordt voorkomen. Ze zijn leverbaar in onbehandeld of verzinkt staal. Trillingsvrij overrijdbare bovenplaten zijn leverbaar in onbehandeld of corrosievast staal. Vloeistofdichtheid is bij een op zand gestorte begane grondvloer doorgaans geen thema. Zie ook het artikel “Voegen in op zand gestorte vloeren”.

Voegprofielen die voor de stort aan de bekisting worden bevestigd. Dit type dilatatievoegprofiel wordt gekenmerkt door schuin of desgewenst horizontaal aangelaste kopbouten. Voor de overdracht van dwarskrachten zijn aparte dwarskrachtdeuvels benodigd. De onderconstructie is onbehandeld of verzinkt, sinusplaten zijn onbehandeld of gemaakt van corrosievast staal. De meeste waterdichte typen worden gekenmerkt door een harmonicavormig tussenrubber en zijn instaat om verticale voegbewegingen op te nemen.

Voegprofielen die achteraf worden gemonteerd. In deze categorie is de keus het grootst. Als het niveau van de constructieve vloer min of meer gelijk is aan de uiteindelijke hoogte zal een sparing moeten worden gemaakt. Dat is het geval bij gevlinderd vloer die al dan niet wordt voorzien van een kunsthars afwerklaag. Met een houten balk van de juiste afmetingen kan de ruimte eenvoudig worden vrijgehouden van beton. Om lastige wapeningsdetails te voorkomen kan de toepassing van een uiterst dun type worden overwogen. De dunste Buchberger voegprofielen zijn 15 en 19 mm dik. Ze kunnen worden gesteld in een sparing van 25 of 30 mm.

Als een dikke afwerkvloer moet worden gemaakt, dan valt de keus eigenlijk altijd op profielen voor montage achteraf. Zo’n profiel wordt op de constructieve vloer op hoogte gesteld en het maken van een sparing is niet nodig. Naast vele stalen profielen zijn ook aluminium exemplaren leverbaar voor vloeren die slechts incidenteel worden belast door voertuigen voor intern transport.

Vervorming van gewapend rubber opleggingen

Bij advies- en prijsaanvragen krijgen wij soms het verzoek om de veerstijfheid (ook wel veerconstante) van een gewapend rubber brugoplegging op te geven. Constructeurs gebruiken deze informatie om vervormingen te berekenen of om de verdeling van krachten te bepalen bij statisch onbepaalde systemen. In de veerconstante wordt uitgedrukt hoe stijf een veer is, ofwel welke kracht nodig is om de veer – in dit geval de oplegging – te vervormen. Verondersteld wordt een recht evenredig verband tussen de belasting en de indrukking (ook wel vervorming). De veerstijfheid blijkt zeer sterk afhankelijk te zijn van de afmetingen en de opbouw van de lagen. In dit artikel wordt uitgelegd hoe dat zit.

De vervorming vz van een gewapend rubber oplegging onder invloed van kracht Fz kan volgens norm EN 1337-3:2005 § 5.3.3.7 worden uitgedrukt als formule-indrukkingDe wiskundig onderlegde lezer ziet direct dat de vervorming de sommering is van de vervormingen van de afzonderlijke lagen en dat de vervorming lineair is met de kracht. De term in groen is alleen afhankelijk van de afmetingen, opbouw van de lagen en de materiaaleigenschappen van de oplegging. Met andere woorden: bij een gegeven oplegging is deze term constant. Dit is de reciproke van de veerstijfheid. De materiaaleigenschappen van brugopleggingen dragen niet of nauwelijks bij in veranderingen in de veerconstante, maar de afmetingen en de opbouw van de lagen hebben een zeer grote invloed. 

Sterk bepalend is vormfactor S1. Deze factor werd zo’n vijftig jaar geleden geïntroduceerd nadat was vastgesteld dat niet alleen de dikte, maar ook de lengte en breedte van een rubber blok van belang zijn bij de indrukking. De vormfactor geeft de verhouding weer tussen het belaste oppervlak en de afmetingen van de onbelaste zijden. Meer daarover in het artikel “Vormfactor: begrenzing van de oplegdruk”.

indrukkingMassief rubber wordt verondersteld onder druk zijn volume te behouden. Als gevolg van een inwendige hydrostatische druk resulteert een indrukking van een blok of plaat in het uitbuiken aan de zijkanten. Om de vormverandering binnen de perken te houden, worden rubber opleggingen dikker dan 20 mm doorgaans gewapend met staalplaatjes. Deze zijn door vulkanisatie hecht verbonden met het rubber en beperken dus de vormverandering. Indrukking-2Hoe groter het oppervlak A’ van de oplegging, hoe kleiner de indrukking. Dat geeft ook een verklaring waarom van oudsher wordt gewerkt met tabel 3 van norm EN 1337-3. Hierin zijn opleggingen qua opbouw van rubber- en staaldikten min of meer gestandaardiseerd. Hoe groter het oppervlak van de oplegging, hoe dikker de lagen (ti) kunnen zijn om een vergelijkbare maximale indrukking te houden.

indrukkingsdiagrarmmenProeven wijzen uit dat de indrukking van rubber niet helemaal lineair is met de kracht, maar het blijkt een aardige benadering voor de belastingen die van toepassing zijn. Hiernaast zien we het werkelijke verband tussen indrukking en belasting voor verschillende afmetingen van ongewapend rubber. De meest gebruikelijke belastingen vallen in het lineaire gebied.

Waar verticale vervorming het gevolg is van belasting, werkt het bij horizontale vervorming precies andersom. De lengteverandering van het opgelegde bouwdeel zorgt voor een vervorming van de oplegging. Deze vervorming leidt vervolgens door de elastische weerstand van het rubber tot een reactiekracht. Deze reactiekracht, Rxy, wordt berekend met de onderstaande formule (zie EN 1337-3:2005 § 5.3.3.6).

reactiekracht

Getoetst wordt of de berekende reactiekracht kleiner blijft dan de maximale wrijvingskracht zodat de oplegging niet gaat glijden. Hierbij moet worden opgemerkt dat in de norm slechts twee wrijvingsfactoren gebruikt worden, één voor beton en één voor “overige materialen” inclusief kunstharsmortels. Deze toets staat onder druk omdat verschillende gevallen bekend zijn van opleggingen die van hun plek zijn gekomen terwijl dit theoretisch niet zou kunnen. PVO doet momenteel onderzoek naar wandelende opleggingen.

Verwarrend is als constructeurs bij hun opgave van belastingen en vervormingen zelf een reactiekracht berekenen en deze als externe horizontale kracht opgeven. In zo’n geval bestaat het risico dat de reactiekrachten twee maal meegenomen worden in een dimensioneringsberekening.

Flexibiliteit in voegprofielen

Tijdens de sloop van de oude toplaag van een parkeerdak bleek een deel van de voegen flink breder dan elders in het bouwwerk. De inmiddels geleverde dilatatievoegprofielen zouden niet passen. Omruilen voor een ander type voegprofiel was geen optie omdat al een groot deel van het renovatieproject was uitgevoerd. Voegprofielen voor een bredere voeg zouden niet aansluiten op het eerder gemaakte werk. Onze fabrikant Buchberger leverde zo snel al mogelijk een speciale uitvoering van het eerder geleverde profiel. Dit kon met overstek worden gemonteerd waardoor een goede aansluiting op de standaard uitvoering geen probleem meer was.

Buchberger voegprofielen zijn grotendeels opgebouwd uit normaal in de handel verkrijgbare staalprofielen en platen. Bedrijfstechnisch biedt dit het voordeel dat sommige producten maar op een enkel onderdeel verschillen. Met een beperkt aantal componenten kan een groot assortiment worden geboden. Voor de meeste projecten is dit voldoende. In voorkomende gevallen, zoals in het voorbeeld hierboven, kan van de standaarduitvoering worden afgeweken. In de fabriek in Hofstetten zijn alle benodigde machines voor onder meer knippen, zetten en lassen van bijzondere uitvoeringen aanwezig. In dit artikel wordt een overzicht gegeven van de vele mogelijkheden die dit biedt.

aangepaste-voetplaatIn geval van de onverwacht brede voeg  in het bovengenoemde renovatieproject werd een bredere en dikkere voetplaat aangebracht dan in de standaard uitvoering. Zo’n profiel kan met enig overstek worden gemonteerd en sluit dus aan de bovenzijde prima aan op het eerdere werk. Door de grotere lengte van de voetplaat wordt voldoende randafstand tot de voeg gehouden en de extra dikte zorgt ervoor dat de verkeersbelastingen worden opgevangen zonder doorbuiging.

sleepplaatHet aanpassen van de voetplaat biedt meer mogelijkheden. Eén daarvan is de zogenoemde “sleepplaat”. Dit is in feite niets anders dan een zeer brede voetplaat ter plaatse van een sprong in een dilatatievoeg. Met een sleepplaat wordt een ingewikkeld detail uit een prefab betonconstructie flink vereenvoudigd. Naast esthetische voordelen geeft het een kostenbesparing. Als we de voeg op de foto hiernaast willen volgen, dan zouden een T-stuk en twee haakse hoeken moeten worden gemaakt. Door toepassing van een sleepplaat kunnen de twee hoeken komen te vervallen. Het detail wordt teruggebracht tot een T-stuk zoals afgebeeld met de rode lijn. In blauw zijn de randen van de voetplaten aangegeven. De sleepplaat zorgt voor de overbrugging van de sprong in de voeg.

dubbel-voegprofielBij twee naast elkaar gelegen voegen kan één brede voetplaat worden gedeeld door twee voegprofielen. De montage wordt hierdoor vereenvoudigd.

W2-aansluitingBijzondere uitvoeringen van wandaansluitingen zijn bijvoorbeeld nodig in de levensmiddelenindustrie. Hier worden vloersystemen gebruikt waar geen vuil kan ophopen. Onderdeel  van zo’n vloerafwerking is de holle plinttegel die hiernaast is afgebeeld. Het dilatatievoegprofiel komt dan niet, zoals gebruikelijk, strak langs de wand maar op enige afstand. Dat vraagt om aanpassing van de onderconstructie.

 

2013_07_24_DC-Tower-1-WienAlle achteraf aan te brengen Buchberger voegprofielen worden in een aantal standaard hoogtematen geleverd. Er zijn echter gevallen waar de grootste maat nog veel te laag is. De foto toont een VA-8-110 voegprofiel met een hoogte van zo’n 450 mm. Dit is toegepast in de Donau City towers in Wenen. De elementen moesten met een kraantje op hun plaats worden gezet.

afdekplaatEen simpele aanpassing is een afdekplaat die over het tussenrubber worden aangebracht. Meestal gaat het hier om situaties waar de opdrachtgever wil voorkomen dat naaldhakken in het rubber worden geplaatst met eventuele vervelende gevolgen voor de drager van dit schoeisel. Ze zijn in Nederland toegepast op enkele NS-stations.

combiWellicht de meest bijzondere aanpassing van een dilatievoegprofiel is de combinatie met een lijngoot. Beide bouwstoffen strijden soms om dezelfde plek in een constructie. Een combinatie, zoals onder meer toegepast in Transferium de Uithof,  biedt dan een goede oplossing.

Enkelvoudige voegovergangsconstructies met klauwprofiel

Eén van de meest toegepaste types voegprofielen in kunstwerken is de enkelvoudige voegovergangsconstructie met klauwprofiel. Deze voegovergangen worden inmiddels tientallen jaren toegepast. De vorm van de klauw – en dus van het rubber – verschilt licht per fabrikant, maar het principe is overal gelijk. In de klauw wordt een rubber afdichtingsprofiel geklemd waarmee de waterdichting van de voeg wordt gerealiseerd.

De wijze waarop de klauwprofielen worden verbonden aan landhoofd en brugdek, wordt afgestemd op het project. Een klauwprofiel kan in principe aan elke constructie worden vastgelast, dus ook direct aan een stalen brug. In de meeste gevallen worden voegovergangen echter op maat geleverd in de vorm van de weg met een verankering die is afgestemd op het project. Deze verankering is bepalend voor de typeaanduiding.

Enkelvoudige stalen voegovergangsconstructies met klauwprofiel zijn ook bekend onder de Engelstalige naam nosing (expansion) joint. Deze term wordt zowel gebruikt in de ETAG 032 (mei 2013), spde RTD 1007 (1 april 2013) en het standaardbestek 260 2.0 (januari 2018). De definitie volgens de RTD 1007 luidt: “Voegovergang met stalen randprofielen met of zonder overgangsbalken van beton, kunsthars of elastomeer. De voegspleet tussen de randprofielen wordt gevuld met een flexibele niet verkeerdragende voegafdichting”. In RTD 1007-1 (MeerKeuzeMatrix of MKM) zijn volgens de inleiding alle bekende typen vermeld en vinden we ook nosing joints die niet of nauwelijks meer beschikbaar zijn. In dit artikel volgen we de indeling  van ETAG 032 annex 4M.

Type 2a – verankering met wapeningsstaal. Dit is het zogenoemde “nieuwbouwmodel”. RTD 1007-1 maakt onderscheid in uitvoeringen zonder (type 1.2a1) en mét (type 1.2a2) Type2ageluidreducerende voorzieningen. Hiermee wordt bedoeld dat de klauwen al dan niet worden voorzien van afdekplaten met een sinusvormige vertanding. In een projectgericht ontwerp wordt rekening gehouden met de hoogte van de afwerklaag. De kruisingshoek die het voegprofiel maakt met de weg bepaalt zowel richting van de verankeringsbeugels als de sinusvorm van de eventuele geluidreducerende afdekplaten. In de MKM staan handige GeluidsLabelWaarden bij verschillende snelheden alsmede een formule voor de correctiefactor als de kruisingshoek afwijkt van 100 gon. Een voeg onder een hoek met de rijrichting maakt nu eenmaal minder geluid dan een exemplaar dat met twee wielen tegelijk wordt gepasseerd.

Type 2b of type 1 – verankering met bouten of deuvels. De klauwen worden vastgezet Type2bmet bouten of schroeven. Het verschil tussen beide ETAG 032-typen is niet helder.  Ook onduidelijk is of een verbinding moet worden gemaakt met de hoofdconstructie. Een uitvoering met kopbouten (MKM concept 1.4b, zie afbeelding) is gangbaar bij licht belaste (delen van) voegen zoals de opstanden en trottoirs van een type 2a-voeg of in fiets- en voetgangersbruggen. Om het comfort voor de fietser of voetganger te verhogen wordt de voeg soms afgedekt met een roestvast stalen plaat die aan één zijde bevestigd wordt. Een mattenvoeg of een B&U-voegprofiel is dan een goedkopere oplossing.

Type 2c – verankering door verlijming. De klauwen zijn indirect – middels een balk van epoxybeton – verbonden met  de constructieve ondergrond. Type2cDit type wordt in Standaardbestek 2.0 opgevoerd als dé renovatievoeg. Gelet op de eisen die het gebruik van epoxybeton stelt aan de weersomstandigheden en de ondergrond is dat merkwaardig. Volgens factsheet 1.4a1 uit de MKM is in Nederland weinig ervaring opgedaan met deze variant. De referentielijst van onze fabrikant SBD vermeldt een kleine dertig projecten in de afgelopen twintig jaar.

Type 2d – verankering door een combinatie van verlijming en ingeboorde wapening. Type2dDit type is in Nederland bekend als hét renovatiemodel en kan worden uitgevoerd mét (concept 1.2b2) en zonder (1.2b1) geluidreducerende sinusplaten. Door de gaten van de aangelaste strips worden wapeningsstaven gestoken die met lijmankers worden bevestigd aan de ondergrond. De resterende sparing wordt gevuld met staalvezelbeton.

Vertrouwen in CE-markering?

Zowel in Nederland als in België bestaat weinig vertrouwen in de kwaliteit van gewapend rubber opleggingen. De introductie van de Verordening Bouwproducten (CPR) in 2013 heeft daar geen verandering in gebracht. In Nederland vraagt Rijkswaterstaat om testresultaten van de fabriek, in België beproeft men extra te leveren opleggingen zelf. De keuringen zijn kostbaar in verhouding en staan niet in verhouding tot de prijs van het product. Het is de vraag waar het wantrouwen vandaan komt en of dit nog terecht is. Om opleggingen met de verplichte CE-markering te mogen leveren, moet de interne kwaliteitsborging immers zijn goedgekeurd door de Europese Unie. Het systeem is juist opgezet met het doel om nationale keuringen te vervangen. Als opdrachtnemer wordt u echter geconfronteerd met de al dan niet terechte wensen van uw opdrachtgever. In dit artikel wordt beschreven waarmee rekening dient te worden gehouden.

Fabrikanten van gewapend rubber opleggingen – in Vlaanderen spreekt men van “oplegtoestellen van gefretteerd rubber” – Certificatehebben veel geld en tijd besteed aan het verkrijgen van certificaten die aantonen dat zij producten met CE-markering mogen leveren. Bij een attesteringsniveau 1 (regelmatige controle door externe partij) bestaat een extra prikkel om de kwaliteitsbewaking op orde te hebben. De periodieke beproeving van halffabricaten en eindproducten resulteert in een constante kwaliteit. In het delicate proces van de productie van gewapend rubber opleggingen kan een verandering van eigenschappen van een ingrediënt immers gevolgen hebben voor de kwaliteit van het eindproduct. Als er maar wat aan gerommeld zou worden, dan heeft de fabrikant een grote kans zijn certificaat te verliezen.

In Nederland haakt Rijkswaterstaat in op het systeem van CE-markering. De in RTD 1012 geëiste rapportage betreft hoofdzakelijk beproevingen volgens de geharmoniseerde testmethoden uit norm EN 1337-3. Deze proeven worden al door de fabrikant zelf gedaan volgens een genormeerd schema. Rijkswaterstaat vraagt echter expliciet om testresultaten van de te leveren partij opleggingen. Dat kost tijd en geld. Bij de ozontest, die normaliter één maal per jaar wordt gedaan, is de specialistische, regelmatig geijkte, apparatuur benodigd van een extern laboratorium. Voor het maken van het gewenste RTD 1012 dossier moet enkele weken worden opgeteld bij de normale productietijd.

CEBelgië lijkt geen enkel vertrouwen te hebben in CE-markering. Meestal wordt voorgeschreven dat extra opleggingen moeten worden geleverd voor destructieve beproeving. Soms mogen die extra opleggingen vooraf worden aangevoerd, soms wil de opdrachtgever zelf de te keuren opleggingen kiezen uit de hele partij. Kennelijk is de gedachte dat de fabrieken A- en B-kwaliteiten kunnen leveren! Onze fabrikant SNAC werkt hier niet meer aan mee. In het verleden zijn hele partijen opleggingen onterecht afgekeurd. Pas na enige maanden bleek dat de beproeving of monstername niet volgens de geharmoniseerde testmethode was gebeurd. Indien gewenst kan wel worden gegarandeerd dat zowel de testexemplaren als de opleggingen die worden toegepast in het bouwwerk uit dezelfde partij rubber worden vervaardigd. De proeven dienen dan vlot te worden uitgevoerd. Een rubbermengsel kan maximaal twee maanden bewaard worden.

Alleen de resultaten van proeven volgens de genormeerde testmethoden worden geaccepteerd. Van belang daarbij is dat ook de monstername op de juiste wijze gebeurd. Aandachtspunten zijn:

  • Hardheid. Dit is geen essentieel kenmerk! Sinds 2005 geldt de afschuifstijfheid of G-modulus (0,9 ± 0,15 MPa) als maat voor de vervormbaarheid. De afschuiftest wordt beschreven in Annex F van de norm. Een hardheidsmeting kan – mits goed uitgevoerd! – alleen nog worden gebruikt om een indruk te krijgen van de homogeniteit van de oplegging.
  • Norm NBN T 31-002:1976 is  per 7 december 2017 vervallen.
  • Norm NBN T 32-001:1980 is per 10-10-2010 vervallen en vervangen door EN 1337-3
  • Tear-strengthMinimale trekweerstand. In bestekken van Infrabel staat dat proefstukken dienen te worden genomen uit een afgewerkte oplegging. Dat is niet conform de norm. Het maken van een proefstuk is een kunst apart. We leveren ze desgewenst graag mee.