Elastomeer

Elastomeren zijn ‘synthetische polymeren met rubberachtige eigenschappen’, aldus Wikipedia. In gewoon Nederlands hebben we het dan over ‘rubber’. De Vlaming kent het materiaal als ‘neopreen’. Het is doorgaans zwart, soms met staal gewapend en altijd elastisch: na belasting neemt het zijn oorspronkelijke vorm weer aan. Een ideale eigenschap in de oplegtechniek! Een opgelegd bouwdeel vervormt immers doorlopend onder invloed van wisselende belastingen en temperatuur. Lengteveranderingen en variërende doorbuigingen worden door een goed gedimensioneerde rubber oplegging gedurende de levensduur van het bouwwerk opgenomen. Niet elk rubber is echter geschikt als oplegmateriaal. Dit artikel behandelt in het kort de mogelijkheden die rubbertechnologen hebben om tot een geschikt eindproduct te komen.

Een definitie van een synthetische stof is dat deze ‘kunstmatig langs chemische weg’ wordt gemaakt. Deze omschrijving geldt dus niet alleen voor rubbers waarvan het hoofdbestanddeel uit aardolie wordt gemaakt maar ook voor natuurrubber (NR). Zonder chemische bewerking en toevoegingen kan met het sap van de rubberboom immers niet het gewenste eindproduct worden verkregen.

Polymeren worden onderscheiden in thermoplasten, thermoharders en elastomeren. Thermoplasten zoals PVC, polyethyleen en teflon hebben niet of nauwelijks vertakte ketens. Ze kunnen makkelijk vervormen. Bij thermoharders zijn de molecuulketens in sterke mate verbonden. Vaak worden ze in twee componenten bijeengebracht om tot het eindresultaat te komen. Voorbeelden zijn bakeliet, polyester en epoxy. Qua vernetting (cross-linking), ofwel de verknoping van molecuulketens, bevinden elastomeren zich tussen de thermoplasten en thermoharders. Na een vervorming veert het product weer terug.

Naast NR zijn EPDM, chloropreen (CR) en SBR de meest bekende grondstoffen voor oplegmaterialen. Deze hoofdcomponent (gewichtsaandeel 20 tot 60%) is ook altijd de naamgever van het eindproduct. We spreken dan bijvoorbeeld over ‘EPDM-rubber’. Een rubbermengsel bestaat verder uit vulstoffen, weekmakers, anti-verouderingsmiddelen en vulkanisatie-activators. In totaal gaat het om zo’n tien tot dertig bestanddelen. De mogelijkheden zijn bijna oneindig.  

Met name de ingrediënten met een hoog gewichtsaandeel zijn bepalend voor de kwaliteit. Een rubbermengsel bestaat voor 20 tot 50% uit verschillende vulstoffen. De actieve varianten hebben een grote invloed op treksterkte, slijtvastheid, hardheid en weerstand tegen veroudering. Passieve vulstoffen worden gebruikt om de productiekosten te drukken. Weekmakers (gewichtsaandeel ca. 20%) zijn nodig om de verwerkbaarheid van het mengsel te vergroten. Ze hebben onder meer invloed op de hardheid, thermische toepassingsgrenzen, rek, elasticiteit en elektrische geleiding. Hoogwaardige weekmakers hebben een grote chemische gelijkenis met de molecuulketens van het rubber. Ze worden gemakkelijk geabsorbeerd in het mengsel. Kwaliteit en het gehalte hebben een grote invloed op alle relevante materiaaleigenschappen en dichtheid van de vernetting.

Deze dwarsverbindingen tussen verschillende monomeerketens worden gemaakt door middel van vulkanisatie. Het homogene rubbermengsel wordt onder druk in een mal tot een hoge temperatuur verhit. Het wordt vloeibaar. Onder invloed van de juiste chemicaliën worden de losse verwarde polymeerketens aan elkaar verbonden en krijgen hun permanente ruimtelijke ordening. Het doel van vulkanisatie is het verkrijgen van het optimale aantal knooppunten, de vernettingsdichtheid. Dit is medebepalend zijn voor de fysische eigenschappen van het eindproduct. De invloed van de mate van vernetting op de eigenschappen van het eindproduct wordt hieronder weergegeven. Bij een hoog aantal knooppunten neemt de hardheid tot een zeker punt toe en de blijvende vervorming (compressieset) wordt minder.  De optimale scheurweerstand en treksterkte worden echter al bereikt bij minder knopen.

De eisen aan oplegmaterialen die worden gebruikt in civieltechnische toepassingen zijn vastgelegd in tabel 1 van norm EN 1337-3:2005. Onderscheid wordt gemaakt in proeven op het eindproduct (tabel 7) en tests op het halffabricaat (tabel 8)! Voor oplegrubber in bouwkundige toepassingen gelden momenteel geen eisen in de Benelux-landen. Zeker bij hoog belaste puntopleggingen is het van belang producten te gebruiken die bijvoorbeeld een Duitse Zulassung hebben voor het gebruik als oplegmateriaal.

Opleggingen in spoorwegprojecten

ProRail en Infrabel zijn belangrijke opdrachtgevers van infrastructurele werken. Net als wegbeheerders confirmeren ze zich niet geheel aan de Europese norm voor opleggingen en stellen aanvullende eisen. Ook hier betreft het voornamelijk de types van gewapend rubber. Door de extra bepalingen kan een aannemer voor onaangename verrassingen komen te staan. In dit artikel wordt aangegeven waarmee rekening dient te worden gehouden.

Geharmoniseerde Europese productnormen zijn bedoeld ter bevordering van het vrije handelsverkeer binnen de Europese Economische Ruimte. Nationale overheden mogen geen extra eisen stellen die dit verstoren. De praktijk is echter weerbarstig. Eerder dit jaar publiceerden wij over dit onderwerp het artikel ‘Vertrouwen in CE-markering?’. Spoorwegbeheerders zijn echter private bedrijven waarin de overheid zeggenschap heeft. De vraag of deze organisaties ook onder het verbod vallen, laten we graag aan juristen over.

In Nederland kan RAW-Appendix RIB 0084 uit 2006 van toepassing worden verklaard. Hoofdstuk 46 heeft betrekking op opleggingen en voegconstructies. Het document sluit op een aantal punten slecht aan bij de Europese norm EN 1337 waar overigens wel naar wordt verwezen. De meest heikele eis vinden we onder 46.03.01.01: van élk oplegblok dient het resultaat van een indrukkings- en een afschuiftest te worden overlegd. Artikel 46.06.02.03 stelt dat dit dient te gebeuren volgens deel 3 van de Europese norm maar zonder vermelding van de betreffende testmethode. Bedoeld wordt Annex F (Shear modulus test method) en Annex H (Compression test method). Opmerkelijk is dat de blokken twee maal voorbelast moeten worden, terwijl dat volgens de Europese norm slechts één maal hoeft.

De productie van gewapend rubber opleggingen is vergelijkbaar met het bakken van brood. Met een partij ‘deeg’ (het rubbermengsel) kan, afhankelijk van de grootte van de blokken, een flink aantal opleggingen worden ‘gebakken’. Tenzij de persdruk en de ‘baktijd’ van de vulkanisatieoven verkeerd worden ingesteld, zal nauwelijks verschil te zien zijn tussen de eigenschappen van blokken uit hetzelfde rubbermengsel. Nog afgezien van het feit dat het testen van elk blok tijdrovend is, levert het geen interessante informatie op.

Op het gebied van glijplaten wijkt RIB 0084 sterk af van de Europese norm. In 46.06.03.03 wordt geëist dat de plaat moet worden gemaakt van corrosievast staal 1.4571. § 5.4.1 van EN 1337-2 schrijft voor dat dit 1.4401 + 2B of 1.4404 + 2B moet zijn. Het afwerkingsniveau is 1P of 2P volgens tabel 6 van EN 10088-2 terwijl § 5.4.2 van EN 1337-2 een behandeling voorschrijft met als resultaat een oppervlakteruwheid van maximaal 1 µm volgens EN ISO 4287. Ook moet de oppervlaktehardheid volgens EN 6507-2 tussen 150 en 220 HV1 liggen. Het resultaat is als een spiegel. Hoe het door ProRail voorgeschreven afwerkingsniveau zich daartoe verhoudt is ons nog onbekend. Afwijken van de Europese norm is om verschillende redenen echter niet aan te raden.

In België vinden we al jaren dezelfde fout in bestekken. Infrabel is daarover door onze fabrikant SNAC lang geleden geïnformeerd maar de tekst is nog altijd ongewijzigd. Gevolg is vaak een hoop gedoe en ontevreden klanten. Ondanks waarschuwingen vooraf én toezending van de juiste monsters, kregen we van een gefrustreerde aannemer het verwijt dat wij niet ‘aan de Belgische normen’ konden voldoen.

In de gewraakte bestektekst wordt gesteld dat een extern laboratorium ‘proefstukken moeten worden genomen uit een afgewerkte oplegging’ en dat ‘de eisen worden weergegeven in tabel 1 van EN 1337-3‘. In dit document wordt echter onderscheid gemaakt in proeven op het eindproduct (tabel 7) en tests op het halffabricaat (tabel 8). ‘Minimale weerstand bij scheur’ (tear resistance) staat in het laatste lijstje. De waarde uit tabel 1 geldt dus voor het rubbermengsel. Tijdens vulkanisatie verandert de molecuulstructuur van het rubber ofwel brood heeft andere eigenschappen dan het deeg!

Tips voor constructeurs

Bij de bouw van viaducten of bruggen wordt het ontwerp van de benodigde opleggingen meestal overgelaten aan de leverancier. De voorschrijver levert een lijst van constructieve eisen aan en vermeldt soms de voorkeur voor een type oplegging. Witte raven reiken de benodigde informatie aan op de wijze zoals voorgeschreven in norm EN 1337-1. Vaker ontvangen we echter enorme tabellen uit de rekenprogrammatuur van de constructeur. U vindt zelf wel wat u nodig heeft!

Eenduidige communicatie bij de inkoop van opleggingen is noodzakelijk onderschrijft ook het Platform Voegovergangen en Opleggingen (PVO). Het voorkomt interpretatiefouten, onjuiste prijsvorming en eventuele schade aan het kunstwerk. Van belang is te vermelden dat de coördinerend constructeur verantwoordelijk is voor het aanleveren van de juiste gegevens. Meer over de overdracht van informatie in “Ontwerp van brugopleggingen, eenduidige communicatie is noodzaak!”. In dit artikel gaan we uit van de dagelijkse praktijk. Hoe worden aangeleverde gegevens opgevat door een specialist in opleggingen? Waar gaat het soms mis? Met welke zaken dient rekening te worden gehouden bij informatieoverdracht?

Tip 1: Alle op te geven waarden zijn in uiterste grenstoestand (UGT). Niet alleen belastingen, maar ook translaties (verplaatsingen) en rotaties (hoekverdraaiingen) moeten worden opgegeven in uiterste grenstoestand. De toetsingsmethodiek voor gewapend rubber oplegblokken uit EN 1337-3:2005 is hierop gebaseerd en ook de ontwerper van de pot- en bolsegmentoplegging rekent met UGT-waarden.  

Tip 2. Geef lengteveranderingen niet op als horizontale belastingen. Verkeers- en windbelastingen zijn horizontale belastingen, lengteveranderingen zijn translaties. Opgelegde vervormingen wekken reactiekrachten op bij elastisch vervormbare opleggingen. Enthousiaste constructeurs rekenen verplaatsingen als gevolg van krimp, kruip en temperatuur soms om naar een horizontale belasting op basis van een aangenomen veerconstante. Zo’n aanname is echter zelden juist. De veerconstante is namelijk sterk afhankelijk van de afmetingen van het rubber blok (zie “Vervorming van gewapend rubber opleggingen”). Bij omrekening bestaat bovendien de kans dat een lengteverandering dubbel wordt meegenomen in de toetsingsmethodiek.

Tip 3. Laat wrijving bij glijopleggingen buiten beschouwing. Wrijving is afhankelijk van de oplegdruk en dus gerelateerd aan de afmetingen van het contactvlak van een glijoplegging. De ontwerper van een oplegging hanteert bij zijn berekeningen tabel 11 uit EN 1337:2. Als wrijvingen onderdeel zijn van de opgegeven horizontale belastingen, dan worden ze dubbel berekend!

Tip 4. Geef translaties op als verlenging en verkorting. De meest gemaakte bron van fouten is vermelding van een translatie als één waarde. Een opleggingenspecialist interpreteert dat doorgaans als plus en min de halve waarde. Met andere woorden: de helft van het opgegeven getal wordt gezien als verkorting van het oplegde bouwdeel, de andere helft als verlenging. Soms blijkt de voorschrijver echter de maximale beweging naar één zijde te hebben bedoeld. Bij een glijoplegging wordt dan een te krappe glijplaat gerekend. Als de beweging naar één kant de enige is, maakt het voor de prijs niet uit. Een glijplaat kan immers een voorinstelling krijgen. Gaat het echter om een translatie die door vervorming moet opgenomen, dan gaat het mis. Aan een rubber oplegging type B of C kan geen voorinstelling worden gegeven.

Als zowel verlenging als verkorting worden opgegeven dan zijn misverstanden uitgesloten. De ontwerper van een gewapend rubber oplegging neemt de grootse absolute waarde mee in zijn berekeningen. Bij het ontwerp van een glijoplegging worden de absolute waarden opgeteld om de lengte van de glijplaat te bepalen.

Tip 4. Geef rotaties op naar twee kanten. Dit gaat meestal goed. De ontwerper neemt de grootse absolute waarde mee in zijn berekeningen. Dit geldt voor elk type oplegging.

Tip 5. Neem geen extra zekerheden op voor vervormingen tenzij strikt noodzakelijk. § 5.4 van EN 1337-1 voorziet in toeslagen voor translaties en rotaties. De opgegeven waarden van de vervormingen worden bij het ontwerp dus al verhoogd.

Tip 6. Stuur een oplegschema mee. De cijfers gaan daarmee leven! De juiste symbolen zijn te vinden in EN 1337-1

Vervorming van gewapend rubber opleggingen

Bij advies- en prijsaanvragen krijgen wij soms het verzoek om de veerstijfheid (ook wel veerconstante) van een gewapend rubber brugoplegging op te geven. Constructeurs gebruiken deze informatie om vervormingen te berekenen of om de verdeling van krachten te bepalen bij statisch onbepaalde systemen. In de veerconstante wordt uitgedrukt hoe stijf een veer is, ofwel welke kracht nodig is om de veer – in dit geval de oplegging – te vervormen. Verondersteld wordt een recht evenredig verband tussen de belasting en de indrukking (ook wel vervorming). De veerstijfheid blijkt zeer sterk afhankelijk te zijn van de afmetingen en de opbouw van de lagen. In dit artikel wordt uitgelegd hoe dat zit.

De vervorming vz van een gewapend rubber oplegging onder invloed van kracht Fz kan volgens norm EN 1337-3:2005 § 5.3.3.7 worden uitgedrukt als formule-indrukkingDe wiskundig onderlegde lezer ziet direct dat de vervorming de sommering is van de vervormingen van de afzonderlijke lagen en dat de vervorming lineair is met de kracht. De term in groen is alleen afhankelijk van de afmetingen, opbouw van de lagen en de materiaaleigenschappen van de oplegging. Met andere woorden: bij een gegeven oplegging is deze term constant. Dit is de reciproke van de veerstijfheid. De materiaaleigenschappen van brugopleggingen dragen niet of nauwelijks bij in veranderingen in de veerconstante, maar de afmetingen en de opbouw van de lagen hebben een zeer grote invloed. 

Sterk bepalend is vormfactor S1. Deze factor werd zo’n vijftig jaar geleden geïntroduceerd nadat was vastgesteld dat niet alleen de dikte, maar ook de lengte en breedte van een rubber blok van belang zijn bij de indrukking. De vormfactor geeft de verhouding weer tussen het belaste oppervlak en de afmetingen van de onbelaste zijden. Meer daarover in het artikel “Vormfactor: begrenzing van de oplegdruk”.

indrukkingMassief rubber wordt verondersteld onder druk zijn volume te behouden. Als gevolg van een inwendige hydrostatische druk resulteert een indrukking van een blok of plaat in het uitbuiken aan de zijkanten. Om de vormverandering binnen de perken te houden, worden rubber opleggingen dikker dan 20 mm doorgaans gewapend met staalplaatjes. Deze zijn door vulkanisatie hecht verbonden met het rubber en beperken dus de vormverandering. Indrukking-2Hoe groter het oppervlak A’ van de oplegging, hoe kleiner de indrukking. Dat geeft ook een verklaring waarom van oudsher wordt gewerkt met tabel 3 van norm EN 1337-3. Hierin zijn opleggingen qua opbouw van rubber- en staaldikten min of meer gestandaardiseerd. Hoe groter het oppervlak van de oplegging, hoe dikker de lagen (ti) kunnen zijn om een vergelijkbare maximale indrukking te houden.

indrukkingsdiagrarmmenProeven wijzen uit dat de indrukking van rubber niet helemaal lineair is met de kracht, maar het blijkt een aardige benadering voor de belastingen die van toepassing zijn. Hiernaast zien we het werkelijke verband tussen indrukking en belasting voor verschillende afmetingen van ongewapend rubber. De meest gebruikelijke belastingen vallen in het lineaire gebied.

Waar verticale vervorming het gevolg is van belasting, werkt het bij horizontale vervorming precies andersom. De lengteverandering van het opgelegde bouwdeel zorgt voor een vervorming van de oplegging. Deze vervorming leidt vervolgens door de elastische weerstand van het rubber tot een reactiekracht. Deze reactiekracht, Rxy, wordt berekend met de onderstaande formule (zie EN 1337-3:2005 § 5.3.3.6).

reactiekracht

Getoetst wordt of de berekende reactiekracht kleiner blijft dan de maximale wrijvingskracht zodat de oplegging niet gaat glijden. Hierbij moet worden opgemerkt dat in de norm slechts twee wrijvingsfactoren gebruikt worden, één voor beton en één voor “overige materialen” inclusief kunstharsmortels. Deze toets staat onder druk omdat verschillende gevallen bekend zijn van opleggingen die van hun plek zijn gekomen terwijl dit theoretisch niet zou kunnen. PVO doet momenteel onderzoek naar wandelende opleggingen.

Verwarrend is als constructeurs bij hun opgave van belastingen en vervormingen zelf een reactiekracht berekenen en deze als externe horizontale kracht opgeven. In zo’n geval bestaat het risico dat de reactiekrachten twee maal meegenomen worden in een dimensioneringsberekening.

Vertrouwen in CE-markering?

Zowel in Nederland als in België bestaat weinig vertrouwen in de kwaliteit van gewapend rubber opleggingen. De introductie van de Verordening Bouwproducten (CPR) in 2013 heeft daar geen verandering in gebracht. In Nederland vraagt Rijkswaterstaat om testresultaten van de fabriek, in België beproeft men extra te leveren opleggingen zelf. De keuringen zijn kostbaar in verhouding en staan niet in verhouding tot de prijs van het product. Het is de vraag waar het wantrouwen vandaan komt en of dit nog terecht is. Om opleggingen met de verplichte CE-markering te mogen leveren, moet de interne kwaliteitsborging immers zijn goedgekeurd door de Europese Unie. Het systeem is juist opgezet met het doel om nationale keuringen te vervangen. Als opdrachtnemer wordt u echter geconfronteerd met de al dan niet terechte wensen van uw opdrachtgever. In dit artikel wordt beschreven waarmee rekening dient te worden gehouden.

Fabrikanten van gewapend rubber opleggingen – in Vlaanderen spreekt men van “oplegtoestellen van gefretteerd rubber” – Certificatehebben veel geld en tijd besteed aan het verkrijgen van certificaten die aantonen dat zij producten met CE-markering mogen leveren. Bij een attesteringsniveau 1 (regelmatige controle door externe partij) bestaat een extra prikkel om de kwaliteitsbewaking op orde te hebben. De periodieke beproeving van halffabricaten en eindproducten resulteert in een constante kwaliteit. In het delicate proces van de productie van gewapend rubber opleggingen kan een verandering van eigenschappen van een ingrediënt immers gevolgen hebben voor de kwaliteit van het eindproduct. Als er maar wat aan gerommeld zou worden, dan heeft de fabrikant een grote kans zijn certificaat te verliezen.

In Nederland haakt Rijkswaterstaat in op het systeem van CE-markering. De in RTD 1012 geëiste rapportage betreft hoofdzakelijk beproevingen volgens de geharmoniseerde testmethoden uit norm EN 1337-3. Deze proeven worden al door de fabrikant zelf gedaan volgens een genormeerd schema. Rijkswaterstaat vraagt echter expliciet om testresultaten van de te leveren partij opleggingen. Dat kost tijd en geld. Bij de ozontest, die normaliter één maal per jaar wordt gedaan, is de specialistische, regelmatig geijkte, apparatuur benodigd van een extern laboratorium. Voor het maken van het gewenste RTD 1012 dossier moet enkele weken worden opgeteld bij de normale productietijd.

CEBelgië lijkt geen enkel vertrouwen te hebben in CE-markering. Meestal wordt voorgeschreven dat extra opleggingen moeten worden geleverd voor destructieve beproeving. Soms mogen die extra opleggingen vooraf worden aangevoerd, soms wil de opdrachtgever zelf de te keuren opleggingen kiezen uit de hele partij. Kennelijk is de gedachte dat de fabrieken A- en B-kwaliteiten kunnen leveren! Onze fabrikant SNAC werkt hier niet meer aan mee. In het verleden zijn hele partijen opleggingen onterecht afgekeurd. Pas na enige maanden bleek dat de beproeving of monstername niet volgens de geharmoniseerde testmethode was gebeurd. Indien gewenst kan wel worden gegarandeerd dat zowel de testexemplaren als de opleggingen die worden toegepast in het bouwwerk uit dezelfde partij rubber worden vervaardigd. De proeven dienen dan vlot te worden uitgevoerd. Een rubbermengsel kan maximaal twee maanden bewaard worden.

Alleen de resultaten van proeven volgens de genormeerde testmethoden worden geaccepteerd. Van belang daarbij is dat ook de monstername op de juiste wijze gebeurd. Aandachtspunten zijn:

  • Hardheid. Dit is geen essentieel kenmerk! Sinds 2005 geldt de afschuifstijfheid of G-modulus (0,9 ± 0,15 MPa) als maat voor de vervormbaarheid. De afschuiftest wordt beschreven in Annex F van de norm. Een hardheidsmeting kan – mits goed uitgevoerd! – alleen nog worden gebruikt om een indruk te krijgen van de homogeniteit van de oplegging. In de Errata aanvulling SB 260 2.0 is dit inmiddels ook zo vermeld. Zie 32-33.1.3.1.C op pagina 242 (digitaal 244).
  • Norm NBN T 31-002:1976 is  per 7 december 2017 vervallen.
  • Norm NBN T 32-001:1980 is per 10-10-2010 vervallen en vervangen door EN 1337-3
  • Tear-strengthMinimale trekweerstand. In bestekken van Infrabel staat dat proefstukken dienen te worden genomen uit een afgewerkte oplegging. Dat is niet conform de norm. Het maken van een proefstuk is een kunst apart. We leveren ze desgewenst graag mee.